qmk-firmware/keyboards/mxss/mxss.c

210 lines
6.0 KiB
C
Raw Normal View History

/* Copyright 2018 Jumail Mundekkat / MxBlue
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
#include "tmk_core/common/eeprom.h"
#include "tmk_core/common/action_layer.h"
#include "rgblight.h"
// Variables for controlling front LED application
uint8_t fled_mode; // Mode for front LEDs
uint8_t fled_val; // Brightness for front leds (0 - 255)
LED_TYPE fleds[2]; // Front LED rgb values for indicator mode use
// Predefined colors for layers
// Format: {hue, saturation}
// {0, 0} to turn off the LED
// Add additional rows to handle more layers
__attribute__ ((weak))
const hs_set layer_colors[] = {
[0] = {0, 0}, // Color for Layer 0
[1] = {86, 255}, // Color for Layer 1
[2] = {36, 255}, // Color for Layer 2
[3] = {185, 255}, // Color for Layer 3
};
__attribute__ ((weak))
const size_t lc_size = sizeof(layer_colors) / sizeof(uint16_t);
void matrix_init_kb(void) {
// If EEPROM config exists, load it
if (eeprom_is_valid()) {
fled_config fled_conf;
fled_conf.raw = eeprom_read_byte(EEPROM_FRONTLED_ADDR);
fled_mode = fled_conf.mode;
fled_val = fled_conf.val * FLED_VAL_STEP;
// Else, default config
} else {
fled_mode = FLED_RGB;
fled_val = 10 * FLED_VAL_STEP;
eeprom_update_conf(); // Store default config to EEPROM
}
// Set default values for leds
setrgb(0, 0, 0, &fleds[0]);
setrgb(0, 0, 0, &fleds[1]);
// Handle lighting for indicator mode
if (fled_mode == FLED_INDI) {
// Enable capslock led if enabled on host
if (host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK))
sethsv(FLED_CAPS_H, FLED_CAPS_S, fled_val, &fleds[0]);
// Determine and set colour of layer LED according to current layer
// if hue = sat = 0, leave LED off
uint8_t layer = biton32(layer_state);
if (layer < lc_size && !(layer_colors[layer].hue == 0 && layer_colors[layer].hue == 0))
sethsv(layer_colors[layer].hue, layer_colors[layer].sat, fled_val, &fleds[1]);
}
matrix_init_user();
}
void matrix_scan_kb(void) {
// put your looping keyboard code here
// runs every cycle (a lot)
matrix_scan_user();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
// Handle custom keycodes for front LED operation
switch (keycode) {
case FLED_MOD: // Change between front LED operation modes (off, indicator, RGB)
if (record->event.pressed)
fled_mode_cycle();
break;
case FLED_VAI: // Increase the brightness of the front LEDs by FLED_VAL_STEP
if (record->event.pressed)
fled_val_increase();
break;
case FLED_VAD: // Decrease the brightness of the front LEDs by FLED_VAL_STEP
if (record->event.pressed)
fled_val_decrease();
break;
default:
break; // Process all other keycodes normally
}
return process_record_user(keycode, record);
}
void led_set_kb(uint8_t usb_led) {
// Set indicator LED appropriately, whether it is used or not
if (usb_led & (1 << USB_LED_CAPS_LOCK)) {
sethsv(FLED_CAPS_H, FLED_CAPS_S, fled_val, &fleds[0]);
} else {
setrgb(0, 0, 0, &fleds[0]);
}
led_set_user(usb_led);
}
uint32_t layer_state_set_kb(uint32_t state) {
// Determine and set colour of layer LED according to current layer
// if hue = sat = 0, leave LED off
uint8_t layer = biton32(state);
if (layer < lc_size && !(layer_colors[layer].hue == 0 && layer_colors[layer].hue == 0))
sethsv(layer_colors[layer].hue, layer_colors[layer].sat, fled_val, &fleds[1]);
else
setrgb(0, 0, 0, &fleds[1]);
return state;
}
// EEPROM Management
// Test if magic value is present at expected location
bool eeprom_is_valid(void)
{
return (eeprom_read_word(EEPROM_MAGIC_ADDR) == EEPROM_MAGIC);
}
// Set magic value at expected location
void eeprom_set_valid(bool valid)
{
eeprom_update_word(EEPROM_MAGIC_ADDR, valid ? EEPROM_MAGIC : 0xFFFF);
}
// Store current front led config in EEPROM
void eeprom_update_conf(void)
{
// Create storage struct and set values
fled_config conf;
conf.mode = fled_mode;
// Small hack to ensure max value is stored correctly
if (fled_val == 255)
conf.val = 256 / FLED_VAL_STEP;
else
conf.val = fled_val / FLED_VAL_STEP;
// Set magic value and store config
eeprom_set_valid(true);
eeprom_update_byte(EEPROM_FRONTLED_ADDR, conf.raw);
}
// Custom keycode functions
void fled_mode_cycle(void)
{
// FLED -> FLED_RGB -> FLED_INDI
switch (fled_mode) {
case FLED_OFF:
fled_mode = FLED_RGB;
break;
case FLED_RGB:
fled_mode = FLED_INDI;
break;
case FLED_INDI:
fled_mode = FLED_OFF;
break;
}
// Update stored config
eeprom_update_conf();
}
void fled_val_increase(void)
{
// Increase val by FLED_VAL_STEP, handling the upper edge case
if (fled_val + FLED_VAL_STEP > 255)
fled_val = 255;
else
fled_val += FLED_VAL_STEP;
// Update stored config
eeprom_update_conf();
}
void fled_val_decrease(void)
{
// Decrease val by FLED_VAL_STEP, handling the lower edge case
if (fled_val - FLED_VAL_STEP > 255)
fled_val = 255;
else
fled_val -= FLED_VAL_STEP;
// Update stored config
eeprom_update_conf();
}