/* Copyright (C) 2019 Elia Ritterbusch + * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* Library made by: g4lvanix * Github repository: https://github.com/g4lvanix/I2C-master-lib */ #include #include #include "i2c_master.h" #include "timer.h" #include "wait.h" #ifndef F_SCL # define F_SCL 400000UL // SCL frequency #endif #define TWBR_val (((F_CPU / F_SCL) - 16) / 2) void i2c_init(void) { TWSR = 0; /* no prescaler */ TWBR = (uint8_t)TWBR_val; #ifdef __AVR_ATmega32A__ // set pull-up resistors on I2C bus pins PORTC |= 0b11; // enable TWI (two-wire interface) TWCR |= (1 << TWEN); // enable TWI interrupt and slave address ACK TWCR |= (1 << TWIE); TWCR |= (1 << TWEA); #endif } i2c_status_t i2c_start(uint8_t address, uint16_t timeout) { // reset TWI control register TWCR = 0; // transmit START condition TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); uint16_t timeout_timer = timer_read(); while (!(TWCR & (1 << TWINT))) { if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) { return I2C_STATUS_TIMEOUT; } } // check if the start condition was successfully transmitted if (((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)) { return I2C_STATUS_ERROR; } // load slave address into data register TWDR = address; // start transmission of address TWCR = (1 << TWINT) | (1 << TWEN); timeout_timer = timer_read(); while (!(TWCR & (1 << TWINT))) { if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) { return I2C_STATUS_TIMEOUT; } } // check if the device has acknowledged the READ / WRITE mode uint8_t twst = TW_STATUS & 0xF8; if ((twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK)) { return I2C_STATUS_ERROR; } return I2C_STATUS_SUCCESS; } i2c_status_t i2c_write(uint8_t data, uint16_t timeout) { // load data into data register TWDR = data; // start transmission of data TWCR = (1 << TWINT) | (1 << TWEN); uint16_t timeout_timer = timer_read(); while (!(TWCR & (1 << TWINT))) { if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) { return I2C_STATUS_TIMEOUT; } } if ((TW_STATUS & 0xF8) != TW_MT_DATA_ACK) { return I2C_STATUS_ERROR; } return I2C_STATUS_SUCCESS; } int16_t i2c_read_ack(uint16_t timeout) { // start TWI module and acknowledge data after reception TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA); uint16_t timeout_timer = timer_read(); while (!(TWCR & (1 << TWINT))) { if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) { return I2C_STATUS_TIMEOUT; } } // return received data from TWDR return TWDR; } int16_t i2c_read_nack(uint16_t timeout) { // start receiving without acknowledging reception TWCR = (1 << TWINT) | (1 << TWEN); uint16_t timeout_timer = timer_read(); while (!(TWCR & (1 << TWINT))) { if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) { return I2C_STATUS_TIMEOUT; } } // return received data from TWDR return TWDR; } i2c_status_t i2c_transmit(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(address | I2C_WRITE, timeout); for (uint16_t i = 0; i < length && status >= 0; i++) { status = i2c_write(data[i], timeout); } i2c_stop(); return status; } i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(address | I2C_READ, timeout); for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) { status = i2c_read_ack(timeout); if (status >= 0) { data[i] = status; } } if (status >= 0) { status = i2c_read_nack(timeout); if (status >= 0) { data[(length - 1)] = status; } } i2c_stop(); return (status < 0) ? status : I2C_STATUS_SUCCESS; } i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, const uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(devaddr | 0x00, timeout); if (status >= 0) { status = i2c_write(regaddr, timeout); for (uint16_t i = 0; i < length && status >= 0; i++) { status = i2c_write(data[i], timeout); } } i2c_stop(); return status; } i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(devaddr, timeout); if (status < 0) { goto error; } status = i2c_write(regaddr, timeout); if (status < 0) { goto error; } status = i2c_start(devaddr | 0x01, timeout); for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) { status = i2c_read_ack(timeout); if (status >= 0) { data[i] = status; } } if (status >= 0) { status = i2c_read_nack(timeout); if (status >= 0) { data[(length - 1)] = status; } } error: i2c_stop(); return (status < 0) ? status : I2C_STATUS_SUCCESS; } void i2c_stop(void) { // transmit STOP condition TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO); }