#include "csc027.h" // Declare the strings in PROGMEM using the convenience macro CUSTOM_MACROS(CUSTOM_DEF, CUSTOM_MACRO_STRING, SEMI_DELIM); static const char* const custom_macros[] PROGMEM = { // Declare the pointer to the strings in PROGMEM CUSTOM_MACROS(CUSTOM_VAR, DROP, COMMA_DELIM) }; bool process_record_user(uint16_t keycode, keyrecord_t *record) { switch(keycode) { case LOWER: if(record->event.pressed) { layer_on(_LW); } else { layer_off(_LW); } update_tri_layer(_LW, _RS, _MS); return false; case RAISE: if(record->event.pressed) { layer_on(_RS); } else { layer_off(_RS); } update_tri_layer(_LW, _RS, _MS); return false; case (MC_first + 1)...(MC_last - 1): if(record->event.pressed) { send_string_P( #if defined(__AVR__) // The accessor here first reads from the pointer array that is located // in PROGMEM. The pointer is taken and passed to the send_string_P // function, which is aware of the difference between RAM and PROGMEM // pointers. (char*)pgm_read_word(&custom_macros[keycode - MC_first - 1]) #else // For non-AVR MCUs, the PROGMEM macro is defined as nothing. So, the strings are // declared in RAM instead of flash. The send_string_P function, when compiled for // non-AVR targets, uses a different definition of pgm_read_byte internally. This // definition uses RAM pointers instead. This is why the raw pointer is passed for // non-AVR MCUs. custom_macros[keycode - MC_first - 1] #endif ); return true; } return false; default: return true; } }