/* Copyright 2019 Drew Mills * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "analog.h" #include "quantum.h" /* User configurable ADC options */ #ifndef ADC_CIRCULAR_BUFFER # define ADC_CIRCULAR_BUFFER FALSE #endif #ifndef ADC_NUM_CHANNELS # define ADC_NUM_CHANNELS 1 #elif ADC_NUM_CHANNELS != 1 # error "The ARM ADC implementation currently only supports reading one channel at a time." #endif #ifndef ADC_BUFFER_DEPTH # define ADC_BUFFER_DEPTH 2 #endif // For more sampling rate options, look at hal_adc_lld.h in ChibiOS #ifndef ADC_SAMPLING_RATE # define ADC_SAMPLING_RATE ADC_SMPR_SMP_1P5 #endif // Options are 12, 10, 8, and 6 bit. #ifndef ADC_RESOLUTION # define ADC_RESOLUTION ADC_CFGR1_RES_12BIT #endif static ADCConfig adcCfg = {}; static adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH]; // Initialize to max number of ADCs, set to empty object to initialize all to false. #if defined(STM32F0XX) static bool adcInitialized[1] = {}; #elif defined(STM32F3XX) static bool adcInitialized[4] = {}; #else # error "adcInitialized has not been implemented for this ARM microcontroller." #endif static ADCConversionGroup adcConversionGroup = { ADC_CIRCULAR_BUFFER, (uint16_t)(ADC_NUM_CHANNELS), NULL, // No end callback NULL, // No error callback #if defined(STM32F0XX) ADC_CFGR1_CONT | ADC_RESOLUTION, ADC_TR(0, 0).ADC_SAMPLING_RATE, NULL, // Doesn't specify a default channel #elif defined(STM32F3XX) ADC_CFGR_CONT | ADC_RESOLUTION, ADC_TR(0, 4095), { ADC_SAMPLING_RATE, ADC_SAMPLING_RATE, }, { 0, // Doesn't specify a default channel 0, 0, 0, }, #endif }; static inline ADCDriver* intToADCDriver(uint8_t adcInt) { ADCDriver* target; switch (adcInt) { // clang-format off #if STM32_ADC_USE_ADC1 case 0: target = &ADCD1; break; #endif #if STM32_ADC_USE_ADC2 case 1: target = &ADCD2; break; #endif #if STM32_ADC_USE_ADC3 case 2: target = &ADCD3; break; #endif #if STM32_ADC_USE_ADC4 case 3: target = &ADCD4; break; #endif default: target = NULL; break; // clang-format on } return target; } static inline void manageAdcInitializationDriver(uint8_t adc, ADCDriver* adcDriver) { if (!adcInitialized[adc]) { adcStart(adcDriver, &adcCfg); adcInitialized[adc] = true; } } static inline void manageAdcInitialization(uint8_t adc) { manageAdcInitializationDriver(adc, intToADCDriver(adc)); } pin_and_adc pinToMux(pin_t pin) { switch (pin) { // clang-format off #if defined(STM32F0XX) case A0: return (pin_and_adc){ ADC_CHANNEL_IN0, 0 }; case A1: return (pin_and_adc){ ADC_CHANNEL_IN1, 0 }; case A2: return (pin_and_adc){ ADC_CHANNEL_IN2, 0 }; case A3: return (pin_and_adc){ ADC_CHANNEL_IN3, 0 }; case A4: return (pin_and_adc){ ADC_CHANNEL_IN4, 0 }; case A5: return (pin_and_adc){ ADC_CHANNEL_IN5, 0 }; case A6: return (pin_and_adc){ ADC_CHANNEL_IN6, 0 }; case A7: return (pin_and_adc){ ADC_CHANNEL_IN7, 0 }; case B0: return (pin_and_adc){ ADC_CHANNEL_IN8, 0 }; case B1: return (pin_and_adc){ ADC_CHANNEL_IN9, 0 }; case C0: return (pin_and_adc){ ADC_CHANNEL_IN10, 0 }; case C1: return (pin_and_adc){ ADC_CHANNEL_IN11, 0 }; case C2: return (pin_and_adc){ ADC_CHANNEL_IN12, 0 }; case C3: return (pin_and_adc){ ADC_CHANNEL_IN13, 0 }; case C4: return (pin_and_adc){ ADC_CHANNEL_IN14, 0 }; case C5: return (pin_and_adc){ ADC_CHANNEL_IN15, 0 }; #elif defined(STM32F3XX) case A0: return (pin_and_adc){ ADC_CHANNEL_IN1, 0 }; case A1: return (pin_and_adc){ ADC_CHANNEL_IN2, 0 }; case A2: return (pin_and_adc){ ADC_CHANNEL_IN3, 0 }; case A3: return (pin_and_adc){ ADC_CHANNEL_IN4, 0 }; case A4: return (pin_and_adc){ ADC_CHANNEL_IN1, 1 }; case A5: return (pin_and_adc){ ADC_CHANNEL_IN2, 1 }; case A6: return (pin_and_adc){ ADC_CHANNEL_IN3, 1 }; case A7: return (pin_and_adc){ ADC_CHANNEL_IN4, 1 }; case B0: return (pin_and_adc){ ADC_CHANNEL_IN12, 2 }; case B1: return (pin_and_adc){ ADC_CHANNEL_IN1, 2 }; case B2: return (pin_and_adc){ ADC_CHANNEL_IN12, 1 }; case B12: return (pin_and_adc){ ADC_CHANNEL_IN2, 3 }; case B13: return (pin_and_adc){ ADC_CHANNEL_IN3, 3 }; case B14: return (pin_and_adc){ ADC_CHANNEL_IN4, 3 }; case B15: return (pin_and_adc){ ADC_CHANNEL_IN5, 3 }; case C0: return (pin_and_adc){ ADC_CHANNEL_IN6, 0 }; // Can also be ADC2 case C1: return (pin_and_adc){ ADC_CHANNEL_IN7, 0 }; // Can also be ADC2 case C2: return (pin_and_adc){ ADC_CHANNEL_IN8, 0 }; // Can also be ADC2 case C3: return (pin_and_adc){ ADC_CHANNEL_IN9, 0 }; // Can also be ADC2 case C4: return (pin_and_adc){ ADC_CHANNEL_IN5, 1 }; case C5: return (pin_and_adc){ ADC_CHANNEL_IN11, 1 }; case D8: return (pin_and_adc){ ADC_CHANNEL_IN12, 3 }; case D9: return (pin_and_adc){ ADC_CHANNEL_IN13, 3 }; case D10: return (pin_and_adc){ ADC_CHANNEL_IN7, 2 }; // Can also be ADC4 case D11: return (pin_and_adc){ ADC_CHANNEL_IN8, 2 }; // Can also be ADC4 case D12: return (pin_and_adc){ ADC_CHANNEL_IN9, 2 }; // Can also be ADC4 case D13: return (pin_and_adc){ ADC_CHANNEL_IN10, 2 }; // Can also be ADC4 case D14: return (pin_and_adc){ ADC_CHANNEL_IN11, 2 }; // Can also be ADC4 case E7: return (pin_and_adc){ ADC_CHANNEL_IN13, 2 }; case E8: return (pin_and_adc){ ADC_CHANNEL_IN6, 2 }; // Can also be ADC4 case E9: return (pin_and_adc){ ADC_CHANNEL_IN2, 2 }; case E10: return (pin_and_adc){ ADC_CHANNEL_IN14, 2 }; case E11: return (pin_and_adc){ ADC_CHANNEL_IN15, 2 }; case E12: return (pin_and_adc){ ADC_CHANNEL_IN16, 2 }; case E13: return (pin_and_adc){ ADC_CHANNEL_IN3, 2 }; case E14: return (pin_and_adc){ ADC_CHANNEL_IN1, 3 }; case E15: return (pin_and_adc){ ADC_CHANNEL_IN2, 3 }; case F2: return (pin_and_adc){ ADC_CHANNEL_IN10, 0 }; // Can also be ADC2 case F4: return (pin_and_adc){ ADC_CHANNEL_IN5, 0 }; #else #error "An ADC pin-to-mux configuration has not been specified for this microcontroller." #endif default: return (pin_and_adc){ 0, 0 }; // clang-format on } } adcsample_t analogReadPin(pin_t pin) { return adc_read(pinToMux(pin)); } adcsample_t analogReadPinAdc(pin_t pin, uint8_t adc) { pin_and_adc target = pinToMux(pin); target.adc = adc; return adc_read(target); } adcsample_t adc_read(pin_and_adc mux) { #if defined(STM32F0XX) adcConversionGroup.sqr = ADC_CHSELR_CHSEL1; #elif defined(STM32F3XX) adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.pin); #else # error "adc_read has not been updated to support this ARM microcontroller." #endif ADCDriver* targetDriver = intToADCDriver(mux.adc); manageAdcInitializationDriver(mux.adc, targetDriver); adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH); adcsample_t* result = sampleBuffer; return *result; }