#include "beeps.h" #include #include #include #include #define PI 3.14159265 #define CHANNEL OCR1C void delay_us(int count) { while(count--) { _delay_us(1); } } int voices = 0; double frequency = 0; int volume = 0; double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; void beeps() { // DDRB |= (1<<7); // PORTB &= ~(1<<7); // // Use full 16-bit resolution. // ICR1 = 0xFFFF; // // I could write a wall of text here to explain... but TL;DW // // Go read the ATmega32u4 datasheet. // // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on // // Pin PB7 = OCR1C (Timer 1, Channel C) // // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0 // // (i.e. start high, go low when counter matches.) // // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0 // // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1 // TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010; // TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001; // // Turn off PWM control on PB7, revert to output low. // // TCCR1A &= ~(_BV(COM1C1)); // // CHANNEL = ((1 << level) - 1); // // Turn on PWM control of PB7 // TCCR1A |= _BV(COM1C1); // // CHANNEL = level << OFFSET | 0x0FFF; // // CHANNEL = 0b1010101010101010; // float x = 12; // float y = 24; // float length = 50; // float scale = 1; // // int f1 = 1000000/440; // // int f2 = 1000000/880; // // for (uint32_t i = 0; i < length * 1000; i++) { // // // int frequency = 1/((sin(PI*2*i*scale*pow(2, x/12.0))*.5+1 + sin(PI*2*i*scale*pow(2, y/12.0))*.5+1) / 2); // // ICR1 = f1; // Set max to the period // // OCR1C = f1 >> 1; // Set compare to half the period // // // _delay_us(10); // // } // int frequency = 1000000/440; // ICR1 = frequency; // Set max to the period // OCR1C = frequency >> 1; // Set compare to half the period // _delay_us(500000); // TCCR1A &= ~(_BV(COM1C1)); // CHANNEL = 0; play_notes(); // play_note(55*pow(2, 0/12.0), 1); // play_note(55*pow(2, 12/12.0), 1); // play_note(55*pow(2, 24/12.0), 1); // play_note(55*pow(2, 0/12.0), 1); // play_note(55*pow(2, 12/12.0), 1); // play_note(55*pow(2, 24/12.0), 1); // play_note(0, 4); // play_note(55*pow(2, 0/12.0), 8); // play_note(55*pow(2, 12/12.0), 4); // play_note(55*pow(2, 10/12.0), 4); // play_note(55*pow(2, 12/12.0), 8); // play_note(55*pow(2, 10/12.0), 4); // play_note(55*pow(2, 7/12.0), 2); // play_note(55*pow(2, 8/12.0), 2); // play_note(55*pow(2, 7/12.0), 16); // play_note(0, 4); // play_note(55*pow(2, 3/12.0), 8); // play_note(55*pow(2, 5/12.0), 4); // play_note(55*pow(2, 7/12.0), 4); // play_note(55*pow(2, 7/12.0), 8); // play_note(55*pow(2, 5/12.0), 4); // play_note(55*pow(2, 3/12.0), 4); // play_note(55*pow(2, 2/12.0), 16); } void send_freq(double freq, int vol) { int duty = (((double)F_CPU) / freq); ICR3 = duty; // Set max to the period OCR3A = duty >> (0x10 - vol); // Set compare to half the period } void stop_all_notes() { voices = 0; TCCR3A = 0; TCCR3B = 0; frequency = 0; for (int i = 0; i < 8; i++) { frequencies[i] = 0; volumes[i] = 0; } } void stop_note(double freq) { for (int i = 7; i >= 0; i--) { if (frequencies[i] == freq) { frequencies[i] = 0; volumes[i] = 0; for (int j = i; (j < 7); j++) { frequencies[j] = frequencies[j+1]; frequencies[j+1] = 0; volumes[j] = volumes[j+1]; volumes[j+1] = 0; } } } voices--; if (voices == 0) { TCCR3A = 0; TCCR3B = 0; frequency = 0; } else { double freq = frequencies[voices - 1]; int vol = volumes[voices - 1]; if (frequency < freq) { for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) { send_freq(f, vol); } } else if (frequency > freq) { for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) { send_freq(f, vol); } } send_freq(freq, vol); frequency = freq; volume = vol; } } void play_note(double freq, int vol) { if (freq > 0) { DDRC |= (1<<6); TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30); TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30); if (frequency != 0) { if (frequency < freq) { for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) { send_freq(f, vol); } } else if (frequency > freq) { for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) { send_freq(f, vol); } } } send_freq(freq, vol); frequency = freq; volume = vol; frequencies[voices] = frequency; volumes[voices] = volume; voices++; } // ICR3 = 0xFFFF; // for (int i = 0; i < 10000; i++) { // OCR3A = round((sin(i*freq)*.5)+.5)*0xFFFF; // // _delay_us(50); // } // TCCR3A = 0; // TCCR3B = 0; } void note(int x, float length) { DDRC |= (1<<6); int t = (int)(440*pow(2,-x/12.0)); // starting note for (int y = 0; y < length*1000/t; y++) { // note length PORTC |= (1<<6); delay_us(t); PORTC &= ~(1<<6); delay_us(t); } PORTC &= ~(1<<6); } void true_note(float x, float y, float length) { for (uint32_t i = 0; i < length * 50; i++) { uint32_t v = (uint32_t) (round(sin(PI*2*i*640000*pow(2, x/12.0))*.5+1 + sin(PI*2*i*640000*pow(2, y/12.0))*.5+1) / 2 * pow(2, 8)); for (int u = 0; u < 8; u++) { if (v & (1 << u) && !(PORTC&(1<<6))) PORTC |= (1<<6); else if (PORTC&(1<<6)) PORTC &= ~(1<<6); } } PORTC &= ~(1<<6); }