#include "adafruit_ble.h" #include #include #include #include #include #include "debug.h" #include "pincontrol.h" #include "timer.h" #include "action_util.h" #include "ringbuffer.hpp" #include #include "analog.h" // These are the pin assignments for the 32u4 boards. // You may define them to something else in your config.h // if yours is wired up differently. #ifndef AdafruitBleResetPin # define AdafruitBleResetPin D4 #endif #ifndef AdafruitBleCSPin # define AdafruitBleCSPin B4 #endif #ifndef AdafruitBleIRQPin # define AdafruitBleIRQPin E6 #endif #define SAMPLE_BATTERY #define ConnectionUpdateInterval 1000 /* milliseconds */ #ifdef SAMPLE_BATTERY # ifndef BATTERY_LEVEL_PIN # define BATTERY_LEVEL_PIN 7 # endif #endif static struct { bool is_connected; bool initialized; bool configured; #define ProbedEvents 1 #define UsingEvents 2 bool event_flags; #ifdef SAMPLE_BATTERY uint16_t last_battery_update; uint32_t vbat; #endif uint16_t last_connection_update; } state; // Commands are encoded using SDEP and sent via SPI // https://github.com/adafruit/Adafruit_BluefruitLE_nRF51/blob/master/SDEP.md #define SdepMaxPayload 16 struct sdep_msg { uint8_t type; uint8_t cmd_low; uint8_t cmd_high; struct __attribute__((packed)) { uint8_t len : 7; uint8_t more : 1; }; uint8_t payload[SdepMaxPayload]; } __attribute__((packed)); // The recv latency is relatively high, so when we're hammering keys quickly, // we want to avoid waiting for the responses in the matrix loop. We maintain // a short queue for that. Since there is quite a lot of space overhead for // the AT command representation wrapped up in SDEP, we queue the minimal // information here. enum queue_type { QTKeyReport, // 1-byte modifier + 6-byte key report QTConsumer, // 16-bit key code #ifdef MOUSE_ENABLE QTMouseMove, // 4-byte mouse report #endif }; struct queue_item { enum queue_type queue_type; uint16_t added; union __attribute__((packed)) { struct __attribute__((packed)) { uint8_t modifier; uint8_t keys[6]; } key; uint16_t consumer; struct __attribute__((packed)) { int8_t x, y, scroll, pan; uint8_t buttons; } mousemove; }; }; // Items that we wish to send static RingBuffer send_buf; // Pending response; while pending, we can't send any more requests. // This records the time at which we sent the command for which we // are expecting a response. static RingBuffer resp_buf; static bool process_queue_item(struct queue_item *item, uint16_t timeout); enum sdep_type { SdepCommand = 0x10, SdepResponse = 0x20, SdepAlert = 0x40, SdepError = 0x80, SdepSlaveNotReady = 0xfe, // Try again later SdepSlaveOverflow = 0xff, // You read more data than is available }; enum ble_cmd { BleInitialize = 0xbeef, BleAtWrapper = 0x0a00, BleUartTx = 0x0a01, BleUartRx = 0x0a02, }; enum ble_system_event_bits { BleSystemConnected = 0, BleSystemDisconnected = 1, BleSystemUartRx = 8, BleSystemMidiRx = 10, }; // The SDEP.md file says 2MHz but the web page and the sample driver // both use 4MHz #define SpiBusSpeed 4000000 #define SdepTimeout 150 /* milliseconds */ #define SdepShortTimeout 10 /* milliseconds */ #define SdepBackOff 25 /* microseconds */ #define BatteryUpdateInterval 10000 /* milliseconds */ static bool at_command(const char *cmd, char *resp, uint16_t resplen, bool verbose, uint16_t timeout = SdepTimeout); static bool at_command_P(const char *cmd, char *resp, uint16_t resplen, bool verbose = false); struct SPI_Settings { uint8_t spcr, spsr; }; static struct SPI_Settings spi; // Initialize 4Mhz MSBFIRST MODE0 void SPI_init(struct SPI_Settings *spi) { spi->spcr = _BV(SPE) | _BV(MSTR); #if F_CPU == 8000000 // For MCUs running at 8MHz (such as Feather 32U4, or 3.3V Pro Micros) we set the SPI doublespeed bit spi->spsr = _BV(SPI2X); #endif ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { // Ensure that SS is OUTPUT High digitalWrite(B0, PinLevelHigh); pinMode(B0, PinDirectionOutput); SPCR |= _BV(MSTR); SPCR |= _BV(SPE); pinMode(B1 /* SCK */, PinDirectionOutput); pinMode(B2 /* MOSI */, PinDirectionOutput); } } static inline void SPI_begin(struct SPI_Settings *spi) { SPCR = spi->spcr; SPSR = spi->spsr; } static inline uint8_t SPI_TransferByte(uint8_t data) { SPDR = data; asm volatile("nop"); while (!(SPSR & _BV(SPIF))) { ; // wait } return SPDR; } static inline void spi_send_bytes(const uint8_t *buf, uint8_t len) { if (len == 0) return; const uint8_t *end = buf + len; while (buf < end) { SPDR = *buf; while (!(SPSR & _BV(SPIF))) { ; // wait } ++buf; } } static inline uint16_t spi_read_byte(void) { return SPI_TransferByte(0x00 /* dummy */); } static inline void spi_recv_bytes(uint8_t *buf, uint8_t len) { const uint8_t *end = buf + len; if (len == 0) return; while (buf < end) { SPDR = 0; // write a dummy to initiate read while (!(SPSR & _BV(SPIF))) { ; // wait } *buf = SPDR; ++buf; } } #if 0 static void dump_pkt(const struct sdep_msg *msg) { print("pkt: type="); print_hex8(msg->type); print(" cmd="); print_hex8(msg->cmd_high); print_hex8(msg->cmd_low); print(" len="); print_hex8(msg->len); print(" more="); print_hex8(msg->more); print("\n"); } #endif // Send a single SDEP packet static bool sdep_send_pkt(const struct sdep_msg *msg, uint16_t timeout) { SPI_begin(&spi); digitalWrite(AdafruitBleCSPin, PinLevelLow); uint16_t timerStart = timer_read(); bool success = false; bool ready = false; do { ready = SPI_TransferByte(msg->type) != SdepSlaveNotReady; if (ready) { break; } // Release it and let it initialize digitalWrite(AdafruitBleCSPin, PinLevelHigh); _delay_us(SdepBackOff); digitalWrite(AdafruitBleCSPin, PinLevelLow); } while (timer_elapsed(timerStart) < timeout); if (ready) { // Slave is ready; send the rest of the packet spi_send_bytes(&msg->cmd_low, sizeof(*msg) - (1 + sizeof(msg->payload)) + msg->len); success = true; } digitalWrite(AdafruitBleCSPin, PinLevelHigh); return success; } static inline void sdep_build_pkt(struct sdep_msg *msg, uint16_t command, const uint8_t *payload, uint8_t len, bool moredata) { msg->type = SdepCommand; msg->cmd_low = command & 0xff; msg->cmd_high = command >> 8; msg->len = len; msg->more = (moredata && len == SdepMaxPayload) ? 1 : 0; static_assert(sizeof(*msg) == 20, "msg is correctly packed"); memcpy(msg->payload, payload, len); } // Read a single SDEP packet static bool sdep_recv_pkt(struct sdep_msg *msg, uint16_t timeout) { bool success = false; uint16_t timerStart = timer_read(); bool ready = false; do { ready = digitalRead(AdafruitBleIRQPin); if (ready) { break; } _delay_us(1); } while (timer_elapsed(timerStart) < timeout); if (ready) { SPI_begin(&spi); digitalWrite(AdafruitBleCSPin, PinLevelLow); do { // Read the command type, waiting for the data to be ready msg->type = spi_read_byte(); if (msg->type == SdepSlaveNotReady || msg->type == SdepSlaveOverflow) { // Release it and let it initialize digitalWrite(AdafruitBleCSPin, PinLevelHigh); _delay_us(SdepBackOff); digitalWrite(AdafruitBleCSPin, PinLevelLow); continue; } // Read the rest of the header spi_recv_bytes(&msg->cmd_low, sizeof(*msg) - (1 + sizeof(msg->payload))); // and get the payload if there is any if (msg->len <= SdepMaxPayload) { spi_recv_bytes(msg->payload, msg->len); } success = true; break; } while (timer_elapsed(timerStart) < timeout); digitalWrite(AdafruitBleCSPin, PinLevelHigh); } return success; } static void resp_buf_read_one(bool greedy) { uint16_t last_send; if (!resp_buf.peek(last_send)) { return; } if (digitalRead(AdafruitBleIRQPin)) { struct sdep_msg msg; again: if (sdep_recv_pkt(&msg, SdepTimeout)) { if (!msg.more) { // We got it; consume this entry resp_buf.get(last_send); dprintf("recv latency %dms\n", TIMER_DIFF_16(timer_read(), last_send)); } if (greedy && resp_buf.peek(last_send) && digitalRead(AdafruitBleIRQPin)) { goto again; } } } else if (timer_elapsed(last_send) > SdepTimeout * 2) { dprintf("waiting_for_result: timeout, resp_buf size %d\n", (int)resp_buf.size()); // Timed out: consume this entry resp_buf.get(last_send); } } static void send_buf_send_one(uint16_t timeout = SdepTimeout) { struct queue_item item; // Don't send anything more until we get an ACK if (!resp_buf.empty()) { return; } if (!send_buf.peek(item)) { return; } if (process_queue_item(&item, timeout)) { // commit that peek send_buf.get(item); dprintf("send_buf_send_one: have %d remaining\n", (int)send_buf.size()); } else { dprint("failed to send, will retry\n"); _delay_ms(SdepTimeout); resp_buf_read_one(true); } } static void resp_buf_wait(const char *cmd) { bool didPrint = false; while (!resp_buf.empty()) { if (!didPrint) { dprintf("wait on buf for %s\n", cmd); didPrint = true; } resp_buf_read_one(true); } } static bool ble_init(void) { state.initialized = false; state.configured = false; state.is_connected = false; pinMode(AdafruitBleIRQPin, PinDirectionInput); pinMode(AdafruitBleCSPin, PinDirectionOutput); digitalWrite(AdafruitBleCSPin, PinLevelHigh); SPI_init(&spi); // Perform a hardware reset pinMode(AdafruitBleResetPin, PinDirectionOutput); digitalWrite(AdafruitBleResetPin, PinLevelHigh); digitalWrite(AdafruitBleResetPin, PinLevelLow); _delay_ms(10); digitalWrite(AdafruitBleResetPin, PinLevelHigh); _delay_ms(1000); // Give it a second to initialize state.initialized = true; return state.initialized; } static inline uint8_t min(uint8_t a, uint8_t b) { return a < b ? a : b; } static bool read_response(char *resp, uint16_t resplen, bool verbose) { char *dest = resp; char *end = dest + resplen; while (true) { struct sdep_msg msg; if (!sdep_recv_pkt(&msg, 2 * SdepTimeout)) { dprint("sdep_recv_pkt failed\n"); return false; } if (msg.type != SdepResponse) { *resp = 0; return false; } uint8_t len = min(msg.len, end - dest); if (len > 0) { memcpy(dest, msg.payload, len); dest += len; } if (!msg.more) { // No more data is expected! break; } } // Ensure the response is NUL terminated *dest = 0; // "Parse" the result text; we want to snip off the trailing OK or ERROR line // Rewind past the possible trailing CRLF so that we can strip it --dest; while (dest > resp && (dest[0] == '\n' || dest[0] == '\r')) { *dest = 0; --dest; } // Look back for start of preceeding line char *last_line = strrchr(resp, '\n'); if (last_line) { ++last_line; } else { last_line = resp; } bool success = false; static const char kOK[] PROGMEM = "OK"; success = !strcmp_P(last_line, kOK); if (verbose || !success) { dprintf("result: %s\n", resp); } return success; } static bool at_command(const char *cmd, char *resp, uint16_t resplen, bool verbose, uint16_t timeout) { const char * end = cmd + strlen(cmd); struct sdep_msg msg; if (verbose) { dprintf("ble send: %s\n", cmd); } if (resp) { // They want to decode the response, so we need to flush and wait // for all pending I/O to finish before we start this one, so // that we don't confuse the results resp_buf_wait(cmd); *resp = 0; } // Fragment the command into a series of SDEP packets while (end - cmd > SdepMaxPayload) { sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, SdepMaxPayload, true); if (!sdep_send_pkt(&msg, timeout)) { return false; } cmd += SdepMaxPayload; } sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, end - cmd, false); if (!sdep_send_pkt(&msg, timeout)) { return false; } if (resp == NULL) { auto now = timer_read(); while (!resp_buf.enqueue(now)) { resp_buf_read_one(false); } auto later = timer_read(); if (TIMER_DIFF_16(later, now) > 0) { dprintf("waited %dms for resp_buf\n", TIMER_DIFF_16(later, now)); } return true; } return read_response(resp, resplen, verbose); } bool at_command_P(const char *cmd, char *resp, uint16_t resplen, bool verbose) { auto cmdbuf = (char *)alloca(strlen_P(cmd) + 1); strcpy_P(cmdbuf, cmd); return at_command(cmdbuf, resp, resplen, verbose); } bool adafruit_ble_is_connected(void) { return state.is_connected; } bool adafruit_ble_enable_keyboard(void) { char resbuf[128]; if (!state.initialized && !ble_init()) { return false; } state.configured = false; // Disable command echo static const char kEcho[] PROGMEM = "ATE=0"; // Make the advertised name match the keyboard static const char kGapDevName[] PROGMEM = "AT+GAPDEVNAME=" STR(PRODUCT); // Turn on keyboard support static const char kHidEnOn[] PROGMEM = "AT+BLEHIDEN=1"; // Adjust intervals to improve latency. This causes the "central" // system (computer/tablet) to poll us every 10-30 ms. We can't // set a smaller value than 10ms, and 30ms seems to be the natural // processing time on my macbook. Keeping it constrained to that // feels reasonable to type to. static const char kGapIntervals[] PROGMEM = "AT+GAPINTERVALS=10,30,,"; // Reset the device so that it picks up the above changes static const char kATZ[] PROGMEM = "ATZ"; // Turn down the power level a bit static const char kPower[] PROGMEM = "AT+BLEPOWERLEVEL=-12"; static PGM_P const configure_commands[] PROGMEM = { kEcho, kGapIntervals, kGapDevName, kHidEnOn, kPower, kATZ, }; uint8_t i; for (i = 0; i < sizeof(configure_commands) / sizeof(configure_commands[0]); ++i) { PGM_P cmd; memcpy_P(&cmd, configure_commands + i, sizeof(cmd)); if (!at_command_P(cmd, resbuf, sizeof(resbuf))) { dprintf("failed BLE command: %S: %s\n", cmd, resbuf); goto fail; } } state.configured = true; // Check connection status in a little while; allow the ATZ time // to kick in. state.last_connection_update = timer_read(); fail: return state.configured; } static void set_connected(bool connected) { if (connected != state.is_connected) { if (connected) { print("****** BLE CONNECT!!!!\n"); } else { print("****** BLE DISCONNECT!!!!\n"); } state.is_connected = connected; // TODO: if modifiers are down on the USB interface and // we cut over to BLE or vice versa, they will remain stuck. // This feels like a good point to do something like clearing // the keyboard and/or generating a fake all keys up message. // However, I've noticed that it takes a couple of seconds // for macOS to to start recognizing key presses after BLE // is in the connected state, so I worry that doing that // here may not be good enough. } } void adafruit_ble_task(void) { char resbuf[48]; if (!state.configured && !adafruit_ble_enable_keyboard()) { return; } resp_buf_read_one(true); send_buf_send_one(SdepShortTimeout); if (resp_buf.empty() && (state.event_flags & UsingEvents) && digitalRead(AdafruitBleIRQPin)) { // Must be an event update if (at_command_P(PSTR("AT+EVENTSTATUS"), resbuf, sizeof(resbuf))) { uint32_t mask = strtoul(resbuf, NULL, 16); if (mask & BleSystemConnected) { set_connected(true); } else if (mask & BleSystemDisconnected) { set_connected(false); } } } if (timer_elapsed(state.last_connection_update) > ConnectionUpdateInterval) { bool shouldPoll = true; if (!(state.event_flags & ProbedEvents)) { // Request notifications about connection status changes. // This only works in SPIFRIEND firmware > 0.6.7, which is why // we check for this conditionally here. // Note that at the time of writing, HID reports only work correctly // with Apple products on firmware version 0.6.7! // https://forums.adafruit.com/viewtopic.php?f=8&t=104052 if (at_command_P(PSTR("AT+EVENTENABLE=0x1"), resbuf, sizeof(resbuf))) { at_command_P(PSTR("AT+EVENTENABLE=0x2"), resbuf, sizeof(resbuf)); state.event_flags |= UsingEvents; } state.event_flags |= ProbedEvents; // leave shouldPoll == true so that we check at least once // before relying solely on events } else { shouldPoll = false; } static const char kGetConn[] PROGMEM = "AT+GAPGETCONN"; state.last_connection_update = timer_read(); if (at_command_P(kGetConn, resbuf, sizeof(resbuf))) { set_connected(atoi(resbuf)); } } #ifdef SAMPLE_BATTERY if (timer_elapsed(state.last_battery_update) > BatteryUpdateInterval && resp_buf.empty()) { state.last_battery_update = timer_read(); state.vbat = analogRead(BATTERY_LEVEL_PIN); } #endif } static bool process_queue_item(struct queue_item *item, uint16_t timeout) { char cmdbuf[48]; char fmtbuf[64]; // Arrange to re-check connection after keys have settled state.last_connection_update = timer_read(); #if 1 if (TIMER_DIFF_16(state.last_connection_update, item->added) > 0) { dprintf("send latency %dms\n", TIMER_DIFF_16(state.last_connection_update, item->added)); } #endif switch (item->queue_type) { case QTKeyReport: strcpy_P(fmtbuf, PSTR("AT+BLEKEYBOARDCODE=%02x-00-%02x-%02x-%02x-%02x-%02x-%02x")); snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->key.modifier, item->key.keys[0], item->key.keys[1], item->key.keys[2], item->key.keys[3], item->key.keys[4], item->key.keys[5]); return at_command(cmdbuf, NULL, 0, true, timeout); case QTConsumer: strcpy_P(fmtbuf, PSTR("AT+BLEHIDCONTROLKEY=0x%04x")); snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->consumer); return at_command(cmdbuf, NULL, 0, true, timeout); #ifdef MOUSE_ENABLE case QTMouseMove: strcpy_P(fmtbuf, PSTR("AT+BLEHIDMOUSEMOVE=%d,%d,%d,%d")); snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->mousemove.x, item->mousemove.y, item->mousemove.scroll, item->mousemove.pan); if (!at_command(cmdbuf, NULL, 0, true, timeout)) { return false; } strcpy_P(cmdbuf, PSTR("AT+BLEHIDMOUSEBUTTON=")); if (item->mousemove.buttons & MOUSE_BTN1) { strcat(cmdbuf, "L"); } if (item->mousemove.buttons & MOUSE_BTN2) { strcat(cmdbuf, "R"); } if (item->mousemove.buttons & MOUSE_BTN3) { strcat(cmdbuf, "M"); } if (item->mousemove.buttons == 0) { strcat(cmdbuf, "0"); } return at_command(cmdbuf, NULL, 0, true, timeout); #endif default: return true; } } bool adafruit_ble_send_keys(uint8_t hid_modifier_mask, uint8_t *keys, uint8_t nkeys) { struct queue_item item; bool didWait = false; item.queue_type = QTKeyReport; item.key.modifier = hid_modifier_mask; item.added = timer_read(); while (nkeys >= 0) { item.key.keys[0] = keys[0]; item.key.keys[1] = nkeys >= 1 ? keys[1] : 0; item.key.keys[2] = nkeys >= 2 ? keys[2] : 0; item.key.keys[3] = nkeys >= 3 ? keys[3] : 0; item.key.keys[4] = nkeys >= 4 ? keys[4] : 0; item.key.keys[5] = nkeys >= 5 ? keys[5] : 0; if (!send_buf.enqueue(item)) { if (!didWait) { dprint("wait for buf space\n"); didWait = true; } send_buf_send_one(); continue; } if (nkeys <= 6) { return true; } nkeys -= 6; keys += 6; } return true; } bool adafruit_ble_send_consumer_key(uint16_t keycode, int hold_duration) { struct queue_item item; item.queue_type = QTConsumer; item.consumer = keycode; while (!send_buf.enqueue(item)) { send_buf_send_one(); } return true; } #ifdef MOUSE_ENABLE bool adafruit_ble_send_mouse_move(int8_t x, int8_t y, int8_t scroll, int8_t pan, uint8_t buttons) { struct queue_item item; item.queue_type = QTMouseMove; item.mousemove.x = x; item.mousemove.y = y; item.mousemove.scroll = scroll; item.mousemove.pan = pan; item.mousemove.buttons = buttons; while (!send_buf.enqueue(item)) { send_buf_send_one(); } return true; } #endif uint32_t adafruit_ble_read_battery_voltage(void) { return state.vbat; } bool adafruit_ble_set_mode_leds(bool on) { if (!state.configured) { return false; } // The "mode" led is the red blinky one at_command_P(on ? PSTR("AT+HWMODELED=1") : PSTR("AT+HWMODELED=0"), NULL, 0); // Pin 19 is the blue "connected" LED; turn that off too. // When turning LEDs back on, don't turn that LED on if we're // not connected, as that would be confusing. at_command_P(on && state.is_connected ? PSTR("AT+HWGPIO=19,1") : PSTR("AT+HWGPIO=19,0"), NULL, 0); return true; } // https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le/ble-generic#at-plus-blepowerlevel bool adafruit_ble_set_power_level(int8_t level) { char cmd[46]; if (!state.configured) { return false; } snprintf(cmd, sizeof(cmd), "AT+BLEPOWERLEVEL=%d", level); return at_command(cmd, NULL, 0, false); }