qmk-firmware/quantum/debounce/eager_pr.c
Alex Ong 17e7762de7 Eager Per Row Debouncing added (added to Ergodox) (#5498)
* Implemented Eager Per Row debouncing algorithm.

Good for when fingers can only press one row at a time (e.g. when keyboard is wired so that "rows" are vertical)

* Added documentation for eager_pr

* Ported ergodox_ez to eager_pr debouncing.

* Removed check for changes in matrix_scan.

* Added further clarification in docs.

* Accidental merge with ergodox_ez

* Small cleanup in eager_pr

* Forgot to debounce_init - this would probably cause seg-faults.
2019-04-03 14:45:55 -07:00

101 lines
3.0 KiB
C

/*
Copyright 2019 Alex Ong<the.onga@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Basic per-row algorithm. Uses an 8-bit counter per row.
After pressing a key, it immediately changes state, and sets a counter.
No further inputs are accepted until DEBOUNCE milliseconds have occurred.
*/
#include "matrix.h"
#include "timer.h"
#include "quantum.h"
#include <stdlib.h>
#ifndef DEBOUNCE
#define DEBOUNCE 5
#endif
#define debounce_counter_t uint8_t
static debounce_counter_t *debounce_counters;
#define DEBOUNCE_ELAPSED 251
#define MAX_DEBOUNCE (DEBOUNCE_ELAPSED - 1)
void update_debounce_counters(uint8_t num_rows, uint8_t current_time);
void transfer_matrix_values(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, uint8_t current_time);
//we use num_rows rather than MATRIX_ROWS to support split keyboards
void debounce_init(uint8_t num_rows)
{
debounce_counters = (debounce_counter_t*)malloc(num_rows*sizeof(debounce_counter_t));
for (uint8_t r = 0; r < num_rows; r++)
{
debounce_counters[r] = DEBOUNCE_ELAPSED;
}
}
void debounce(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, bool changed)
{
uint8_t current_time = timer_read() % MAX_DEBOUNCE;
update_debounce_counters(num_rows, current_time);
transfer_matrix_values(raw, cooked, num_rows, current_time);
}
//If the current time is > debounce counter, set the counter to enable input.
void update_debounce_counters(uint8_t num_rows, uint8_t current_time)
{
debounce_counter_t *debounce_pointer = debounce_counters;
for (uint8_t row = 0; row < num_rows; row++)
{
if (*debounce_pointer != DEBOUNCE_ELAPSED)
{
if (TIMER_DIFF(current_time, *debounce_pointer, MAX_DEBOUNCE) >= DEBOUNCE) {
*debounce_pointer = DEBOUNCE_ELAPSED;
}
}
debounce_pointer++;
}
}
// upload from raw_matrix to final matrix;
void transfer_matrix_values(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, uint8_t current_time)
{
debounce_counter_t *debounce_pointer = debounce_counters;
for (uint8_t row = 0; row < num_rows; row++)
{
matrix_row_t existing_row = cooked[row];
matrix_row_t raw_row = raw[row];
//determine new value basd on debounce pointer + raw value
if (*debounce_pointer == DEBOUNCE_ELAPSED &&
(existing_row != raw_row))
{
*debounce_pointer = current_time;
existing_row = raw_row;
}
cooked[row] = existing_row;
debounce_pointer++;
}
}
bool debounce_active(void)
{
return true;
}